CEINT NanoInformtics Knowledge Commons (CEINT-NIKC) Building Research Tools for Nano EHS

Greg Lowry, Sandra Karcher, Yuan Tian, Jeanne VanBriesen, Christine Hendren, Mark Wiesner

Carnegie Mellon University, Duke University
Department of Civil and Environmental Engineering

www.ceint.duke.edu

Center for the Environment Implications of Nanotechnology

Core Institutions: Duke, CMU, Stanford, Howard, Kentucky, Va Tech

\$30M from NSF + EPA

10-years (currently in yr 7)

43 faculty, >130 Students/P-docs

Interdisciplinary

 Env. Eng., Geochemistry, Public Policy, Chem E., Mat Sci., Chemistry, Ecology, Toxicology

Goal:

Elucidate the relationship between the vast array of nanomaterials and properties to their environmental and human health risks

Process to Achieving this Goal

CEINT Approach to Managing Complexity

Goal of CEINT-NIKC

Database Design and Approach

- 1) Structure for storage
- Protocols for populating
- 3) Key fields for querying

- SQL (MSFT Access)
- Develop and document
- ➤ Use key fields to organize, sort, and pull subsets of our data together

Information Flow

- an Experiment or manufacturing process
- occurs at a Location
- > in a **System**
- of Matrix (e.g., soil, water, plant, etc.)

at specific **time** points:

- an Action happened (take something out, add something, or measure something in-situ)
- following a set of Methods or protocols
- resulting in a measurement or observation of a specific Parameter
 - after the experiment has be completed, typically:
- we calculate something following a method or protocol

Targeted Information

- > Nanomaterial characterization
 - Associated metadata
- System characterization
 - Associated metadata
- Nanomaterial dosing information
- > Experimental methods
- > Experimental results
- ► Calculated values

Components of CEINT-NIKC

Alternative View of M&O Plus

Using Data From

Environmental Science & Technology

Article

pubs.acs.org/est

Long-Term Transformation and Fate of Manufactured Ag Nanoparticles in a Simulated Large Scale Freshwater Emergent Wetland

Gregory V. Lowry,*,*,*,[⊥] Benjamin P. Espinasse,*, Appala Raju Badireddy,*, Curtis J. Richardson,*, Brian C. Reinsch,*, Lee D. Bryant,*, Audrey J. Bone,*, Amrika Deonarine,*, Soryong Chae,*, Mathieu Therezien,*, Benjamin P. Colman,*, Heileen Hsu-Kim,*, Emily S. Bernhardt,*, Cole W. Matson,*, and Mark R. Wiesner*, Gregory V. Lowry,*, Appala Raju Badireddy,*, Curtis J. Richardson,*, Marking Deonarine,*, Soryong Chae,*, Nathieu Therezien,*, Benjamin P. Colman,*, Heileen Hsu-Kim,*, Emily S. Bernhardt,*, Cole W. Matson,*, and Mark R. Wiesner*, Marking Cole W. Matson,*, Appala Raju Badireddy,*, Curtis J. Richardson,*, Soryong Chae,*, Nathieu Therezien,*, Appala Raju Badireddy,*, Curtis J. Richardson,*, Soryong Chae,*, Nathieu Therezien,*, Appala Raju Badireddy,*, Curtis J. Richardson,*, Soryong Chae,*, Nathieu Therezien,*, Appala Raju Badireddy,*, Amrika Deonarine,*, Soryong Chae,*, Nathieu Therezien,*, Appala Raju Badireddy,*, Amrika Deonarine,*, Soryong Chae,*, Nathieu Therezien,*, Appala Raju Badireddy,*, Amrika Deonarine,*, Soryong Chae,*, Nathieu Therezien,*, Appala Raju Badireddy,*, Amrika Deonarine,*, Soryong Chae,*, Nathieu Therezien,*, Nathieu Therezien,*

dx.doi.org/10.1021/es204608d | Environ. Sci. Technol. 2012, 46, 7027-7036

Experimental Setup

- DO above SWI
- Cores •18
 - 4 depth intervals

Surface Water Interface (at 0) —

- One mesocosm dosed in soil compartment
- One mesocosm dosed in water compartment

AgNPs Sulfidize in the Environment

Ag Speciation in Aquatic Sediments

Ag Bioavailability in Mesocosms

Summary Statistics on DO

 ▶ Find average dissolved oxygen concentration just above the surface water interface
 1) Pull the relevant records

	Location		Sample			More Specific			
Location	Group	Beginning	Ending		Sample	Information about the			Parameter
Group	Number	Depth	Depth	Depth Unit	Matrix	Sample Matrix	Parameter of Interest	Value	Unit
mesocosm	1	-4.2	-4.2	millimeter	water	surface water interface	dissolved oxygen	208.4	micromolar
mesocosm	1	-3.2	-3.2	millimeter	water	surface water interface	dissolved oxygen	202.8	micromolar
mesocosm	1	-2.1	-2.1	millimeter	water	surface water interface	dissolved oxygen	203.2	micromolar
mesocosm	1	-1.1	-1.1	millimeter	water	surface water interface	dissolved oxygen	191.8	micromolar
mesocosm	2	-6.0	-6.0	millimeter	water	surface water interface	dissolved oxygen	221.8	micromolar
mesocosm	2	-5.0	-5.0	millimeter	water	surface water interface	dissolved oxygen	216.1	micromolar
mesocosm	2	-4.1	-4.1	millimeter	water	surface water interface	dissolved oxygen	200.5	micromolar
mesocosm	2	-3.0	-3.0	millimeter	water	surface water interface	dissolved oxygen	202.1	micromolar
mesocosm	2	-2.0	-2.0	millimeter	Water	surface water interface	dissolved oxygen	185.2	micromolar
mesocosm	2	-1.1	-1.1	millimeter	Water	surface water interface	dissolved oxygen	157.8	micromolar

Components

User friendly query tools & FAQs

- Easily get answers to predefined questions
 - Does NP size determine fate or effects?
 - Does NP dissolution rate determine biouptake?
 - Does natural organic matter concentration determine toxicity?
 - Does NP coating type determine toxicity?

These questions are <u>moving targets</u> and will update as more knowledge is gained!

GIS Visualization - Background

- ➤ Mass of silver in sediment
 - 3 by 6 grid (18 cores)
 - Spit into 4 depth intervals

GIS Visualization

- ➤ Query the database
 - Data Source of GVL2012LongTerm
 - Matrix of soil or sediment
 - Parameter label of silver
 - Elapsed time > 530 days
 - Units of milligram

Query the Dataset

Data Source	Location Group	Location Group Number	Elapsed Time		Y Coordinate	Beginning Depth	Ending Depth	Depth Unit	Sample Matrix	Parameter of Interest	Parameter Unit	Measured Value
GVL2012Long Term	mesocosm	1	580.8	-78.9822	36.01773	0	1	centimeter	sediment	silver	milligram	27
GVL2012Long Term	mesocosm	1	580.8	-78.9822	36.01773	1	2	centimeter	sediment	silver	milligram	10.7
GVL2012Long Term	mesocosm	1	580.8	-78.9822	36.01773	2	4	centimeter	sediment	silver	milligram	6.4
GVL2012Long Term	mesocosm	1	580.8	-78.9822	36.01773	4	22	centimeter	sediment	silver	milligram	0
GVL2012Long Term	mesocosm	1	580.8	-78.9822	36.01773	0	1	centimeter	sediment	silver	milligram	19.1
GVL2012Long Term	mesocosm	1	580.8	-78.9822	36.01773	1	2	centimeter	sediment	silver	milligram	6.9
GVL2012Long Term	mesocosm	1	580.8	-78.9822	36.01773	2	4	centimeter	sediment	silver	milligram	4.5
GVL2012Long Term	mesocosm	1	580.8	-78.9822	36.01773	4	22	centimeter	sediment	silver	milligram	0
GVL2012Long Term	mesocosm	1	580.8	-78.9822	36.01774	0	1	centimeter	sediment	silver	milligram	12.5
GVL2012Long Term	mesocosm	1	580.8	-78.9822	36.01774	1	2	centimeter	sediment	silver	milligram	32.4
GVL2012Long Term	mesocosm	1	580.8	-78.9822	36.01774	2	4	centimeter	sediment	silver	milligram	11.3
GVL2012Long Term	mesocosm	1	580.8	-78.9822	36.01774	4	22	centimeter	sediment	silver	milligram	0

Water Dosed Mesocosm

- Circle diameter increases with depth
- > Darker shade indicates more silver mass

water side

soil side

Summary and Forward Looking

- > Building a research tool, not just a repository
 - But, it will be interoperable with materials databases, e.g. NR
- > Data curation in a meaningful way is excruciating
 - Need to populate database for meaningful analysis
- > Key questions drive database structure and data collection
 - Chicken and egg problem
- Compendium of methods is needed
- Working to make data entry easier for users
 - Key fields depend on key questions
- Working on data analysis and data visualization tools

